

ministero delle politiche agricole alimentari, forestali e del turismo

PROGRAMMA OPERATIVO AGRICOLTURA 2014 - 2020

Sottopiano 2 - Interventi nel campo delle Infrastrutture irrigue

C.U.P. E96J16001360009

CONSORZIO DI BONIFICA "VELIA"

Località Piano della Rocca, 84060 - PRIGNANO CILENTO (SA)

Tel. 0974/837206 - Fax. 0974/837154 - Pec: consorziovelia@pec.it - www.consorziovelia.com

COMPLETAMENTO IMPIANTO IRRIGUO DELL'ALENTO

Sistema di distribuzione intersettoriale (3° lotto di distribuzione - 1° stralcio)

(o rono di dionio della rono)					
Fatt. tecnico-economica Prog		getto definitivo 🗆 🔠	Progetto esecutivo		
Elaborato A4 Scala	- Data	Settembre 2020	evisione 1 2 3 4 5 6		
Oggetto	azione dell'a	zione sismica d	lel sito		
TIPOLOGIA ELABORATO	Descrittivo	☐ Grafico	Calcolo		
☐ Economico	☐ Sicurezza	Disciplinare - Contrattuale	□ Altro		
PROGETTISTA Velia Ingegneria e Servizi Srl Loc. Piano Della Rocca 84060 - Prignano Cilento (SA) Tel. 0974/837206 - Pec: veliaingegneria@pec.it Ing. Gaetano Suppa Iscritto all'Albo degli Ingegneri di Salerno n. 1854 dal 12.09.1983 GEOLOGO Dott. Geol. Francesco Peduto Iscritto all'Albo dei Geologi Regione Campania n. 2683 dal 06.05.1988		RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Giancarlo Greco Iscritto all'Albo degli Ingegneri di Salerno n. 5168 dal 11.09.2006 Consorzio di Bonifica "Velia" Loc. Piano Della Rocca 84060 - Prignano Cilento (SA) Tel. 0974/837206 - Fax 0974/837154 - Pec: consorziovelia@pec.it			
Rif. archivio digitale - 15	Rif. archivio digitale - 15g.2020/Ve.lng.				

VALUTAZIONE DELL'AZIONE SISMICA SUL SITO

Premessa

La presente Relazione riporta la caratterizzazione sismica del sito interessato dagli interventi previsti dal progetto "Completamento schema idrico dell' Alento Sistema di Distribuzione Intersettoriale 3° lotto di completamento - 1° stralcio", ciò al fine della progettazione e verifica, in base alle NTC 2018, delle opere previste costituite essenzialmente da gabbionate in pietrame a protezione delle sponde dei corsi d'acqua attraversati dalla tubazioni di progetto, e da pozzetti in c.a. di alloggiamento delle tubazioni. I Comuni interessati sono quelli di Rutino, Torchiara, Prignano e Lustra, tutti ricadenti in zona 3 (bassa sismicità) in base alla Deliberazione di Giunta Regionale n° 5447 del 07 novembre 2002.

Valutazione della sismica

Pericolosità sismica di base

Una importante novità introdotta nelle Nuove Norme Tecniche 2018 è il calcolo della "Pericolosità sismica di base" del sito di costruzione che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche ed è funzione delle coordinate geografiche del sito di realizzazione dell'opera e del Tempo di Ritorno. La pericolosità sismica è definita da:

- \checkmark a_g = accelerazione sismica massima attesa di un sito di riferimento rigido con superficie topografica orizzontale;
- ✓ \mathbf{F}_0 = valore massimo di amplificazione dello spettro in accelerazione orizzontale. Per il calcolo di \mathbf{a}_g ed \mathbf{F}_0 , si è qui utilizzato il programma per il calcolo dei parametri di pericolosità sismica per area geografica, **Spettri-NTC ver.1.0.3.xls**, messo a disposizione Ministero.

INTRO

D.M. 14 gennaio 2008 - Approvazione delle Nuove Norme Tecniche per le Costruzioni

Spettri di risposta ver. 1.0.3

Il documento Excel SPETTRI-NTC fornisce gli spettri di risposta rappresentativi delle componenti (orizzontali e verticale) delle azioni sismiche di progetto per il generico sito del territorio nazionale. La definizione degli spettri di risposta relativi ad uno Stato Limite è articolata in 3 fasi, ciascuna delle quali prevede la scelta dei valori di alcuni parametri da parte dell'utente:

FASE 1. Individuazione della pericolosità del sito (sulla base dei risultati del progetto S1 - INGV);

FASE 2. Scelta della strategia di progettazione;

FASE 3. Determinazione dell'azione di progetto.

La schermata relativa a ciascuna fase è suddivisa in sotto-schermate: l'utente può intervenire nelle sotto-schermate con sfondo grigio scuro mentre quelle con sfondo grigio chiaro consentono un immediato controllo grafico delle scelte effettuate. In ogni singola fase l'utente può visualizzare e stampare i risultati delle elaborazioni -in forma sia grafica che numerica- nonchè i relativi riferimenti alle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14.01.2008 pubblicate nella G.U. n.29 del 04.02.2008 Suppl. Ord. n.30 e scaricabile dal sito www.cslp.it

Programma ottimizzato per una visualizzazione schermo 1024 x 768

Inserendo nel programma le coordinate del sito di interesse vengono forniti i parametri a_g ed F_0 in funzione del Tempo di Ritorno T_R . In particolare nel caso in esame dato il notevole sviluppo longitudinale dell'area oggetto di studio sono stati ricavati i vari parametri sismici per ogni sezione che individua lo specifico intervento da realizzare. Per calcolare il valore dei parametri a_g e F_0 , è dunque necessario valutare il Tempo di Ritorno.

Tempo di Ritorno T_R

Il tempo di ritorno è valutato in funzione della vita di riferimento V_R ed in base alla corrispondente probabilità del suo superamento allo stato limite che si intende verificare. La vita di riferimento viene calcolata in funzione della Vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \times C_U$$

Vita nominale V_N : indica in numero di anni nel quale la struttura deve essere usata per lo scopo per cui è progettata.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	${f Valori\ minimi}$ d ${f i}\ {f V}_{ m N}$ (anni)	
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Coefficiente d'uso Cu: parametro definito in base alla classe d'uso della struttura in funzione del livello di affollamento e dell'interesse strategico.

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad i-tinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Tab. 2.4.II − Valori del coefficiente d'uso C_{tt}

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C_U	0,7	1,0	1,5	2,0

Nei confronti delle azioni sismiche gli stati limite ultimi sono definiti riferendosi alle prestazioni della costruzione nel suo complesso includendo elementi strutturali, non strutturali ed impianti:

- ✓ Stato limite Ultimo di salvaguardia della vita (SLV)
- ✓ Stato limite Ultimo di prevenzione del collasso (SLC)

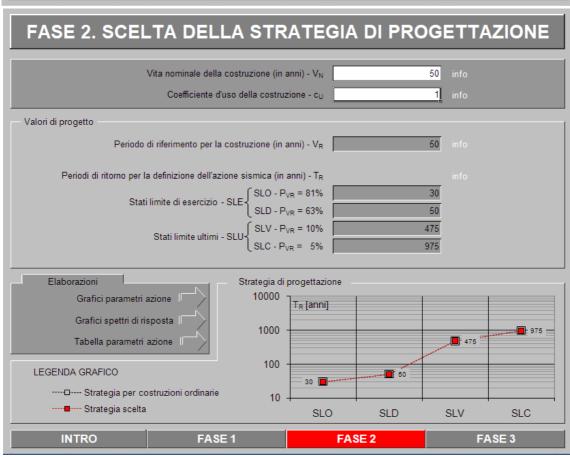
La probabilità di superamento nel periodo di riferimento P_{VR} sono definite in funzione degli stati limite considerati.

 ${f Tab.~3.2.I}$ – Probabilità di superamento $P_{{f V}_{\pi}}$ in funzione dello stato limite considerato

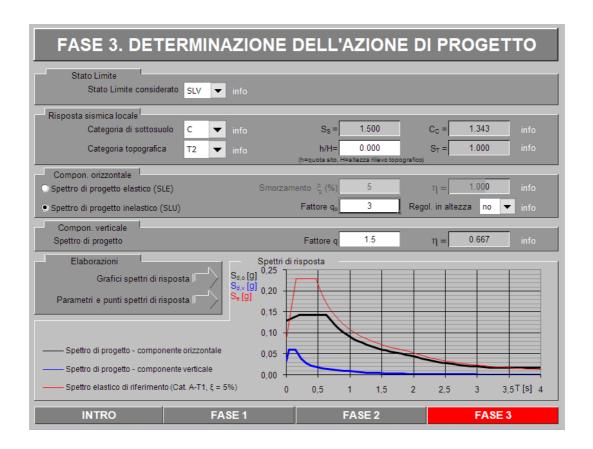
Stati Limite	$P_{V_{\mathbb{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\mathbb{R}}$	
Stati limite di esercizio	SLO	81%
	SLD	63%
Stati limite ultimi	SLV	10%
	SLC	5%

Fissata quindi la vita di riferimento e lo stato limite si ricava il tempo di ritorno:

 $T_R = - V_R / (In (1- P_{VR}))$


Se VR < 35 anni si pone comunque = 35 anni.

Una volta stabiliti i parametri di progetto, V_N e C_U , il programma Spettri-NTC ver.1.0.3.xls. permette di realizzare le varie estrapolazioni.



Risposta Sismica Locale

Per definire l'azione sismica di progetto è necessario valutare la "Risposta Sismica Locale" e cioè quelle modifiche che un segnale sismico subisce rispetto a quello di base di un sito di riferimento rigido e con superficie topografica orizzontale:

$$a_{max} = a_g x S_t x S_s$$

 S_s = Coefficiente di Amplificazione Stratigrafica, dipende dalla caratterizzazione geotecnica del materiale che costituisce i primi 30 metri di profondità (calcolati dal piano di imposta della fondazione della struttura di sostegno) nella località di realizzazione dell'opera.

Tab. 3.2.IV – Espressioni di S_5 e di C_C

Categoria sottosuolo	S _S	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40 - 1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80$	1,25 · (T _C *) -0,50
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) -0,40

St = Coefficiente di Amplificazione Topografica, si applica per dislivelli topografici maggiori di 30m e con pendenza i maggiore di 15°; dipende dalla condizione topografica dell'opera e varia in funzione della pendenza del pendio e della localizzazione dell'opera su di esso da 1 alla base al valore St riportato in tabella alla sommità.

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	Sγ
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Coefficienti sismici

In condizioni sismiche la norma prescrive le stesse verifiche da realizzarsi in condizioni statiche con l'introduzione dei coefficienti sismici orizzontali k_h e k_v che devono essere calcolati mediante le espressioni:

$$\mathbf{k}_{h} = \beta_{s} (a_{max} / g)$$

 $\mathbf{k}_{v} = + 0.5 \text{ kh}$

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito il coefficiente di riduzione si applica solo ai muri in grado di subire spostamenti relativi rispetto al terreno, e si calcola in funzione della categoria del sottosuolo e della zona geografica tramite il valore di a_g (SLV di cui al capitolo precedente).

Tab. 7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito

	Categoria di sottosuolo	
	A B, C, D, E	
	$\beta_{\mathbf{s}}$	$\beta_{\mathbf{S}}$
$0.2 < a_g(g) \le 0.4$	0,30	0,28
$0.1 < a_g(g) \le 0.2$	0,27	0,24
$a_g(g) \leq 0.1$	0,20	0,20

Le verifiche devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni ed impiegando i parametri geotecnici e le resistenze di progetto applicando i coefficienti parziali cioè riducendo i parametri del terreno.

Risposta Sismica Locale

Comune: Prignano Cilento (SA)

Latitudine = 40,3319 Longitudine = 15,0695

Vita nominale VN = 50 anni Coefficiente d'uso CU = 1 Categoria sottosuolo = C Categoria topografica = T2

Accelerazione orizzontale ag = 0,086g

Coefficiente di Amplificazione Stratigrafica Ss = 1,5

Coefficiente di Amplificazione Topografica St = 1,2

Accelerazione orizzontale massima amax = ag x St x Ss = 0,371g

Coefficiente di riduzione dell'accelerazione massima attesa al sito $\beta m = 0.38$

Coefficienti sismici:

 $kh = \beta m (amax/g) = 0.24*(0.161g/g) = 0.053$

 $kv = +0.5 \text{ kh} = \pm 0.5^{*}0.04 = \pm 0.027$